Find exact value of the expression? sin[tan^-1(2)]

3 Answers
Jul 25, 2018

sin(tan^(-1)(2))=2/sqrt5

Explanation:

Let alpha=tan^(-1)2, then tanalpha=2

and cotalpha=1/2 and cscalpha=sqrt(1+(1/2)^2)=sqrt5/2

Hence sin(tan^(-1)(2))=sinalpha=2/sqrt5

Jul 25, 2018

sin[tan^-1(2)]=2/sqrt5

Explanation:

We know that,

color(red)((1)tan^-1x=arc tanx=arc sin(x/sqrt(1+x^2)) , x > 0

color(blue)((2)sin(sin^-1x)=sin(arc sinx)=x , x in [-1,1]

Let ,

A=sin[tan^-1(2)]=sin(arc tan2)

:.A=sin(color(red)(arc sin (2/sqrt(1+2^2))))...to color(red)(Aplly (1)

:.A=color(blue)(sin(arc sin(2/sqrt5))).....tocolor(blue)(Apply(2)

:.A=2/sqrt5 ,where ,2/sqrt5~~0.8944 in [-1,1]

Jul 25, 2018

2/sqrt5.

Explanation:

Both ( sin^(-1)) and (tan^(-1)) values in ( - pi/2, pi/2 ).

If tan value > 0, so is sine. And so, .

tan^(-1)( 2 ) = sin^(-1)( 2/sqrt5). Now,

sin tan^(-1)(2 ) = sin sin^(-1)(2/sqrt5) = (1)(2/ sqrt5),

using

sin sin^(-1), cos cos^(-1), tan tan^(-1),

sec sec^(-1), csc csc^(-1) and cot cot^(-1)

operations amount to multiplication by 1.