How do you prove that Cosx(Tanx+Cotx) = cscx?

2 Answers
Jul 25, 2018

Please see below.

Explanation:

cosx(tanx+cotx)

= cosx(sinx/cosx+cosx/sinx)

= cosx((sin^2x+cos^2x)/(sinxcosx))

= cosx xx 1/(sinxcosx)

= 1/sinx

= cscx

Jul 25, 2018

Please see below.

Explanation:

We know that,

color(red)((1)tantheta=sintheta/costheta and cot theta=costheta/sintheta

color(blue)((2)sin^2theta+cos^2theta=1

Given that,

cosx(tanx+cotx)=cscx

LHS=cosx(tanx+cotx)

color(white)(LHS)=cosx{sinx/cosx+cosx/sinx}....tocolor(red)(Apply(1)

color(white)(LHS)=cosx{(sin^2x+cos^2x)/(cosxsinx)}...color(blue)(Apply(2)

color(white)(LHS)=cosx{1/(sinxcosx)}

color(white)(LHS)=1/sinx

color(white)(LHS)=cscx

:.LHS=RHS