The numbers #x,y z# satisfy #abs(x+2)+abs(y+3)+abs(z-5)=1# then prove that #abs(x+y+z)<=1#?

1 Answer
Jul 25, 2018

Please see Explanation.

Explanation:

Recall that, #|(a+b)| le |a|+|b|............(star)#.

#:. |x+y+z|=|(x+2)+(y+3)+(z-5)|#,

# le |(x+2)|+|(y+3)|+|(z-5)|....[because, (star)]#,

#=1...........[because," Given]"#.

# i.e., |(x+y+z)| le 1#.