How do you differentiate #e^(x/y)=x-y#?

1 Answer
Jul 27, 2018

# dy/dx={x-(x-y)ln(x-y)}/y, or, x/y{1-1/y*e^(x/y)}#.

Explanation:

Prerequisites : The Usual Rules of Differentiation.

Given that, #e^(x/y)=x-y#.

#:. lne^(x/y)=ln(x-y)#.

#:. x/y=ln(x-y), or, x=yln(x-y)#.

#:. d/dx{x}=d/dx{xln(x-y)}#.

#:.1=xd/dx{ln(x-y)}+ln(x-y)*d/dx{y},#

# i.e., 1=x*1/(x-y)*d/dx{x-y}+ln(x-y)*dy/dx,#

# or, 1=x/(x-y){d/dx(x)-d/dx(y)}+ln(x-y)*dy/dx#.

#:. 1=x/(x-y){1-dy/dx}+ln(x-y)*dy/dx#.

#:. 1=x/(x-y)-x/(x-y)*dy/dx+ln(x-y)dy/dx#.

#:. 1-x/(x-y)={ln(x-y)-x/(x-y)}dy/dx#.

#:. {(x-y)-x}/cancel(x-y)={(x-y)ln(x-y)-x}/cancel(x-y)*dy/dx#.

#:. -y={(x-y)ln(x-y)-x}dy/dx#.

# rArr dy/dx={x-(x-y)ln(x-y)}/y#.

Since, #(x-y)=e^(x/y) and ln(x-y)=x/y#, we may write,

#dy/dx=x/y-1/y*e^(x/y)*x/y=x/y{1-1/y*e^(x/y)}#.