lim_(x to 0^+)(x^alog(x))/(log(1+x^2)(sin(x^2)-sin^2(x))), a>0
=x^a/log(1+x^2)*log(x)/(sin(x^2)-sin^2(x))
Now let observe x^a/log(1+x^2)
The limit is 0/0, and both functions are continuous on 0^+.
Using L'Hôpital's therorem
=(ax^(a-1))/((2x)/(1+x^2))
=a/2(x^(a-2)+x^(a-1))
And lim_(x to 0^+) a/2(x^(a-2)+x^(a-1))=0
Now we have lim_(x to 0^+) ((a/2(x^(a-2)+x^(a-1)))log(x))/(sin(x^2)-sin^2(x))
Now Let's take a look at (a/2(x^(a-2)+x^(a-1)))/(sin(x^2)-sin^2(x))
Using L'Hôpital's theorem
=a/2((a-2)x^(a-3)+(a-1)x^(a-2))/(2xcos(x^2)-2cos(x)sin(x))
Using L'Hôpital again
f=a/4((a-2)(a-3)x^(a-4)+(a-1)(a-2)x^(a-3))/(cos(x^2)+2x²sin(x²)-sin(2x))
With lim_(x to 0^+)f(x) =0
Finally, lim_(x to 0^+)f(x)log(x)=lim_(x to 0^+)log(x^(f(x)))=log(1)=0
\0/ Here's our answer !