1sin(r)sin(r+1)=1sin1[sin1sin(r)sin(r+1)]
=1sin1[sin((r+1)−r)sin(r)sin(r+1)]
=1sin1[sin(r+1)cos(r)−cos(r+1)sin(r)sin(r)sin(r+1)]
=1sin1[sin(r+1)cos(r)sin(r)sin(r+1)−cos(r+1)sin(r)sin(r)sin(r+1)]
=1sin1[cot(r)−cot(r+1)]
Now
LHS=r=133∑r=461sin(r)sin(r+1)
=1sin1r=133∑r=46[cot(r)−cot(r+1)]
=1sin1(cot46−cot134)
=1sin1(cot46−cot(180−46))
=1sin1(cot46+cot46)
=2cot46csc1