The sum 1sin46sin47+1sin47sin48+1sin48sin49++1sin133sin134= ?

1 Answer
Jul 29, 2018

1sin(r)sin(r+1)=1sin1[sin1sin(r)sin(r+1)]

=1sin1[sin((r+1)r)sin(r)sin(r+1)]

=1sin1[sin(r+1)cos(r)cos(r+1)sin(r)sin(r)sin(r+1)]

=1sin1[sin(r+1)cos(r)sin(r)sin(r+1)cos(r+1)sin(r)sin(r)sin(r+1)]

=1sin1[cot(r)cot(r+1)]

Now

LHS=r=133r=461sin(r)sin(r+1)

=1sin1r=133r=46[cot(r)cot(r+1)]

=1sin1(cot46cot134)

=1sin1(cot46cot(18046))

=1sin1(cot46+cot46)

=2cot46csc1