We have, #f_1(x)=-((2x+7)/(x+3)), and, f_1(f_n(x))=f_(n+1)(x)#.
Observe that, #f_1(x)=-((2x+7)/(x+3))=-((2x+6+1)/(x+3))#
#=-((2x+6)/(x+3)+1/(x+3))#.
# rArr f_1(x)=-(2+1/(x+3))=-2-1/(x+3)#
#:. f_2(x)=f_1(f_1(x))#
#=f_1(-2-1/(x+3))=f_1(y)," say, "y=-2-1/(x+3)#,
#=-2-1/(y+3)=-2-1/(-2-1/(x+3)+3)#,
#=-2-1/(1-1/(x+3))=-2-(x+3)/(x+3-1)#,
#=-2-(x+3)/(x+2)=-2-(x+2+1)/(x+2)#,
#=-2-((x+2)/(x+2)+1/(x+2))#
# rArr f_2(x)=-3-1/(x+2)#.
#:. f_3(x)=f_1(f_2(x))#,
#=f_1(t)," say, where, "t=f_2(x)=-3-1/(x+2)#,
#=-2-1/(t+3)#,
#=-2-1/(-3-1/(x+2)+3)=-2-1/(-1/(x+2))=-2+x+2#.
#rArr f_3(x)=x#.
Clearly, then, #f_6(x)=f_9(x)=...=f_(3m)(x)=x, AA m in NN#.
Since, #2001=3(667)#, we have,
#f_2001(x)=x, & therefore, f_2001(2002)=2002#.
#color(magenta)("Enjoy Maths.!")#