Find the value of {sqrt(i) + sqrt(-i)} ?

1 Answer
Aug 1, 2018

sqrt(i) + sqrt(-i) is sqrt2i or -sqrt2i

Explanation:

Let sqrt(i)=x, then sqrt(-i)=sqrt(i^3)=isqrt(i)=ix

then sqrt(i) + sqrt(-i)=x(1+i)

Let sqrti=a+bi, then squaring we get

i=(a^2-b^2)+2abi

i.e. a^2-b^2=0 and 2ab=1

meaning a^2+b^2=sqrt((a^2-b^2)^2+4a^2b^2)=sqrt1=1

Hence a^2=1/2 and b^2=1/2 i.e. a=1/sqrt2 and b=1/sqrt2 or a=-1/sqrt2 and b=-1/sqrt2

and sqrti=1/sqrt2+1/sqrt2i or -1/sqrt2-1/sqrt2i

and sqrti+sqrt(-i)=(1/sqrt2+1/sqrt2i)(1+i)

= sqrt2i

or sqrti+sqrt(-i)=(-1/sqrt2-1/sqrt2i)(1+i)

= -sqrt2i