If in triangle ABC sin^(2)A+sin^(2)B+sin^(2)C=2 then the triangle is options are below?

  1. right angled but may not be isosceles
  2. equilateral
  3. right angled and isosceles
  4. isosceles but may not be right angled

1 Answer
Aug 5, 2018

Given

sin^2A+sin^2B+sin^2C=2

=>1-sin^2A+1-sin^2B-sin^2C=0

=>cos^2A+cos^2B-sin^2C=0

=>2cos^2A+2cos^2B-2sin^2C=0

=>1+cos2A+1+cos2B-2(1-cos^2C)=0

=>1+cos2A+1+cos2B-2+2cos^2C=0

=>cos2A+cos2B+2cos^2C=0

=>2cos(A+B)cos(A-B)+2cos^2C=0

=>cos(pi-C)cos(A-B)+cos^2C=0

=>-cosCcos(A-B)+cos^2C=0

=>cosCcos(A-B)-cos^2C=0

=>cosCcos(A-B)-cosC*cos(pi-(A+B))=0

=>cosC[cos(A-B)+cos(A+B)]=0

=>cosC*2cosAcosB=0

So any of A, Band C must be 90^@

If A=90^@ then sin^2A=1

And then B+C=90^@

So sin^2B+sin^2C

=sin^2(pi/2-C)+sin^2C

=cos^2C+sin^2C=1

Hence sin^2A+sin^2B+sin^2C=2 is satisfied for any right angled triangle.