Prove that the product of the length of perpendiculars from (alpha,beta) to the lines given by ax^2+2hxy+by^2=0 is (alpha^2+2halphabeta+b*beta^2)/(sqrt((a-b)^2+4h^2))?

1 Answer
Aug 6, 2018

Let the equations of the component straight lines are

y+m_1x=0and y+m_2x=0

So

(y+m_1x)(y+m_2x)=y^2+(2h)/bxy+a/bx^2

=>y^2+(m_1+m_2)xy+m_2m_2x^2=y^2+(2h)/bxy+a/bx^2

Comparing we get

m_1+m_2=(2h)/b

And

m_1m_2=a/b

Now the product of the length of the perpendiculars from the point (alpha,beta) is

=(beta+m_1alpha)/sqrt(1+m_1^2)*(beta+m_2alpha)/sqrt(1+m_2^2)

=(beta^2+(m_1+m_2)alphabeta+m_1m_2alpha^2)/sqrt(1+m_1^2+m_2^2+m_1^2m_2^2)

=(beta^2+(m_1+m_2)alphabeta+m_1m_2alpha^2)/sqrt(1+(m_1+m_2)^2-2m_1m_2+m_1^2m_2^2)

=(beta^2+(2h)/balphabeta+a/balpha^2)/sqrt(1+((2h)/b)^2-2a/b+a^2/b^2)

=(aalpha^2+2halphabeta+b*beta^2)/sqrt((a-b)^2+4h^2)