The value of (cos (pi/12)-sin (pi/12))(tan (pi/12)+cos( pi/12) )(cos(π12)sin(π12))(tan(π12)+cos(π12))??

1 Answer
Aug 10, 2018

(cos (pi/12)-sin (pi/12))(tan (pi/12)+cos( pi/12) )(cos(π12)sin(π12))(tan(π12)+cos(π12))

= (cos (pi/12)/cos (pi/12)-sin (pi/12)/cos (pi/12))cos (pi/12)(tan (pi/12)+cos( pi/12) )=(cos(π12)cos(π12)sin(π12)cos(π12))cos(π12)(tan(π12)+cos(π12))

=(1-tan(pi/12))(sin(pi/12)+cos^2(pi/12))=(1tan(π12))(sin(π12)+cos2(π12))

=(1-tan(pi/12))(sin(pi/12)+1/2(1+cos(pi/6))=(1tan(π12))(sin(π12)+12(1+cos(π6))

=(1-tan(pi/12))(sin(pi/12)+1/2(1+cos(pi/6))=(1tan(π12))(sin(π12)+12(1+cos(π6))

Now tan(pi/12)=tan(pi/3-pi/4)tan(π12)=tan(π3π4)

=(tan(pi/3)-tan(pi/4))/(1+tan(pi/3)tan(pi/4))=(sqrt3-1)/(sqrt3+1)=tan(π3)tan(π4)1+tan(π3)tan(π4)=313+1
Again
sin(pi/12)sin(π12)

=sin(pi/3-pi/4)=sin(π3π4)

=sin(pi/3)cos(pi/4)-cos(pi/3)sin(pi/4)=sin(π3)cos(π4)cos(π3)sin(π4)

=(sqrt3-1)/(2sqrt2)=3122
So
(1-tan(pi/12))(sin(pi/12)+1/2(1+cos(pi/6))(1tan(π12))(sin(π12)+12(1+cos(π6))

=(1-(sqrt3-1)/(sqrt3+1))((sqrt3-1)/(2sqrt2)+1/2(1+sqrt3/2))=(1313+1)(3122+12(1+32))

=(2/(sqrt3+1))((sqrt3-1)/(2sqrt2)+1/8(4+2sqrt3))=(23+1)(3122+18(4+23))

=(sqrt3-1)((sqrt3-1)/(2sqrt2)+1/8(sqrt3+1)^2)=(31)(3122+18(3+1)2)

=((sqrt3-1)^2/(2sqrt2)+1/8(sqrt3-1)(sqrt3+1)^2)=⎜ ⎜(31)222+18(31)(3+1)2⎟ ⎟

=((sqrt3-1)^2/(2sqrt2)+1/4(sqrt3+1))=⎜ ⎜(31)222+14(3+1)⎟ ⎟

=((4-2sqrt3)/(2sqrt2)+1/4(sqrt3+1))=(42322+14(3+1))

=((2-sqrt3)/(sqrt2)+1/4(sqrt3+1))=(232+14(3+1))

=((2sqrt2-sqrt6)/2+1/4(sqrt3+1))=(2262+14(3+1))