(cos (pi/12)-sin (pi/12))(tan (pi/12)+cos( pi/12) )(cos(π12)−sin(π12))(tan(π12)+cos(π12))
= (cos (pi/12)/cos (pi/12)-sin (pi/12)/cos (pi/12))cos (pi/12)(tan (pi/12)+cos( pi/12) )=(cos(π12)cos(π12)−sin(π12)cos(π12))cos(π12)(tan(π12)+cos(π12))
=(1-tan(pi/12))(sin(pi/12)+cos^2(pi/12))=(1−tan(π12))(sin(π12)+cos2(π12))
=(1-tan(pi/12))(sin(pi/12)+1/2(1+cos(pi/6))=(1−tan(π12))(sin(π12)+12(1+cos(π6))
=(1-tan(pi/12))(sin(pi/12)+1/2(1+cos(pi/6))=(1−tan(π12))(sin(π12)+12(1+cos(π6))
Now tan(pi/12)=tan(pi/3-pi/4)tan(π12)=tan(π3−π4)
=(tan(pi/3)-tan(pi/4))/(1+tan(pi/3)tan(pi/4))=(sqrt3-1)/(sqrt3+1)=tan(π3)−tan(π4)1+tan(π3)tan(π4)=√3−1√3+1
Again
sin(pi/12)sin(π12)
=sin(pi/3-pi/4)=sin(π3−π4)
=sin(pi/3)cos(pi/4)-cos(pi/3)sin(pi/4)=sin(π3)cos(π4)−cos(π3)sin(π4)
=(sqrt3-1)/(2sqrt2)=√3−12√2
So
(1-tan(pi/12))(sin(pi/12)+1/2(1+cos(pi/6))(1−tan(π12))(sin(π12)+12(1+cos(π6))
=(1-(sqrt3-1)/(sqrt3+1))((sqrt3-1)/(2sqrt2)+1/2(1+sqrt3/2))=(1−√3−1√3+1)(√3−12√2+12(1+√32))
=(2/(sqrt3+1))((sqrt3-1)/(2sqrt2)+1/8(4+2sqrt3))=(2√3+1)(√3−12√2+18(4+2√3))
=(sqrt3-1)((sqrt3-1)/(2sqrt2)+1/8(sqrt3+1)^2)=(√3−1)(√3−12√2+18(√3+1)2)
=((sqrt3-1)^2/(2sqrt2)+1/8(sqrt3-1)(sqrt3+1)^2)=⎛⎜
⎜⎝(√3−1)22√2+18(√3−1)(√3+1)2⎞⎟
⎟⎠
=((sqrt3-1)^2/(2sqrt2)+1/4(sqrt3+1))=⎛⎜
⎜⎝(√3−1)22√2+14(√3+1)⎞⎟
⎟⎠
=((4-2sqrt3)/(2sqrt2)+1/4(sqrt3+1))=(4−2√32√2+14(√3+1))
=((2-sqrt3)/(sqrt2)+1/4(sqrt3+1))=(2−√3√2+14(√3+1))
=((2sqrt2-sqrt6)/2+1/4(sqrt3+1))=(2√2−√62+14(√3+1))