If logx/(a^2+ab+b^2)=log y/(b^2+bc+c^2)=log z/(c^2+ca+a^2)logxa2+ab+b2=logyb2+bc+c2=logzc2+ca+a2 then find x^(a-b)* y^(b-c)*z^(c-a)=xabybczca=?

2 Answers
Aug 11, 2018

Let
logx/(a^2+ab+b^2)=log y/(b^2+bc+c^2)=log z/(c^2+ca+a^2)=klogxa2+ab+b2=logyb2+bc+c2=logzc2+ca+a2=k

so
logx=k(a^2+ab+b^2)logx=k(a2+ab+b2)

log y=k(b^2+bc+c^2) logy=k(b2+bc+c2)

log z=k(c^2+ca+a^2)logz=k(c2+ca+a2)

Now

log[x^(a-b)* y^(b-c)*z^(c-a)]log[xabybczca]

=(a-b)logx+ (b-c)logy+(c-a)logz=(ab)logx+(bc)logy+(ca)logz

=(a-b)xxk(a^2+ab+b^2)+ (b-c)lxxk(b^2+bc+c^2)+(c-a)lxxk(c^2+ca+a^2)=(ab)×k(a2+ab+b2)+(bc)l×k(b2+bc+c2)+(ca)l×k(c2+ca+a2)

=k(a^3-b^3+b^3-c^3+c^3-a^3)=kxx0=0=log1=k(a3b3+b3c3+c3a3)=k×0=0=log1

Hence

x^(a-b)* y^(b-c)*z^(c-a)=1xabybczca=1

Aug 11, 2018

x^(a-b)*y^(b-c)*z^(c-a) =1xabybczca=1

Explanation:

We know that,

(1)log_zA=P<=>A=z^P(1)logzA=PA=zP

We take ,the base of log as 1010

Let ,

logx/(a^2+ab+b^2)=logy/(b^2+bc+c^2)=logz/(c^2+ca+a^2)=klogxa2+ab+b2=logyb2+bc+c2=logzc2+ca+a2=k

So ,

logx=k(a^2+ab+b^2)=>x=10^(k(a^2+ab+b^2))logx=k(a2+ab+b2)x=10k(a2+ab+b2)

logy=k(b^2+bc+c^2)=>y=10^(k(b^2+bc+c^2)logy=k(b2+bc+c2)y=10k(b2+bc+c2)

logz=k(c^2+ca+a^2)=>z=10^(k(c^2+ca+a^2)logz=k(c2+ca+a2)z=10k(c2+ca+a2)

Now ,

x^(a-b)=10^(k(a-b)(a^2+ab+b^2))=10^(k(a^3-b^3)xab=10k(ab)(a2+ab+b2)=10k(a3b3)

y^(b-c)=10^(k(b-c)(b^2+bc+c^2))=10^(k(b^3-c^3)ybc=10k(bc)(b2+bc+c2)=10k(b3c3)

z^(c-a)=10^(k(c-a)(c^2+ca+a^2))=10^(k(c^3-a^3)zca=10k(ca)(c2+ca+a2)=10k(c3a3)

Hence ,

x^(a-b)*y^(b-c)*z^(c-a) =10^(k(a^3-b^3) )*10^(k(b^3-c^3))*10^(k(c^3-a^3)xabybczca=10k(a3b3)10k(b3c3)10k(c3a3)

x^(a-b)*y^(b-c)*z^(c-a) =10^((k(a^3-b^3) )+(k(b^3-c^3))+(k(c^3-a^3)xabybczca=10(k(a3b3))+(k(b3c3))+(k(c3a3)

x^(a-b)*y^(b-c)*z^(c-a) =10^(k(a^3-b^3+b^3-c^3+c^3-a^3)xabybczca=10k(a3b3+b3c3+c3a3)

x^(a-b)*y^(b-c)*z^(c-a) =10^(k(0)) =10^0=1xabybczca=10k(0)=100=1

x^(a-b)*y^(b-c)*z^(c-a) =1xabybczca=1