We know that,
(1)log_zA=P<=>A=z^P(1)logzA=P⇔A=zP
We take ,the base of log as 1010
Let ,
logx/(a^2+ab+b^2)=logy/(b^2+bc+c^2)=logz/(c^2+ca+a^2)=klogxa2+ab+b2=logyb2+bc+c2=logzc2+ca+a2=k
So ,
logx=k(a^2+ab+b^2)=>x=10^(k(a^2+ab+b^2))logx=k(a2+ab+b2)⇒x=10k(a2+ab+b2)
logy=k(b^2+bc+c^2)=>y=10^(k(b^2+bc+c^2)logy=k(b2+bc+c2)⇒y=10k(b2+bc+c2)
logz=k(c^2+ca+a^2)=>z=10^(k(c^2+ca+a^2)logz=k(c2+ca+a2)⇒z=10k(c2+ca+a2)
Now ,
x^(a-b)=10^(k(a-b)(a^2+ab+b^2))=10^(k(a^3-b^3)xa−b=10k(a−b)(a2+ab+b2)=10k(a3−b3)
y^(b-c)=10^(k(b-c)(b^2+bc+c^2))=10^(k(b^3-c^3)yb−c=10k(b−c)(b2+bc+c2)=10k(b3−c3)
z^(c-a)=10^(k(c-a)(c^2+ca+a^2))=10^(k(c^3-a^3)zc−a=10k(c−a)(c2+ca+a2)=10k(c3−a3)
Hence ,
x^(a-b)*y^(b-c)*z^(c-a) =10^(k(a^3-b^3) )*10^(k(b^3-c^3))*10^(k(c^3-a^3)xa−b⋅yb−c⋅zc−a=10k(a3−b3)⋅10k(b3−c3)⋅10k(c3−a3)
x^(a-b)*y^(b-c)*z^(c-a) =10^((k(a^3-b^3) )+(k(b^3-c^3))+(k(c^3-a^3)xa−b⋅yb−c⋅zc−a=10(k(a3−b3))+(k(b3−c3))+(k(c3−a3)
x^(a-b)*y^(b-c)*z^(c-a) =10^(k(a^3-b^3+b^3-c^3+c^3-a^3)xa−b⋅yb−c⋅zc−a=10k(a3−b3+b3−c3+c3−a3)
x^(a-b)*y^(b-c)*z^(c-a) =10^(k(0)) =10^0=1xa−b⋅yb−c⋅zc−a=10k(0)=100=1
x^(a-b)*y^(b-c)*z^(c-a) =1xa−b⋅yb−c⋅zc−a=1