If a,b,c are in A.P then find a^2(b+c) , b^2(c+a) , c^2(a+b) are in A.P ?

1 Answer
Aug 11, 2018

Please see below.

Explanation:

As a,b,c are in A.P., we have 2b=a+c

and hence a^2(b+c)+c^2(a+b)

= a^2b+a^2c+c^2a+c^2b

= a^2b+ac(a+c)+bc^2

= a^2b+acxx2b+bc^2

= b(a^2+2ac+c^2)

= b(a+c)^2

= b*(2b)^2

= 4b^3

= 2b^2xx2b

= 2b^2(a+c)

i.e. a^2(b+c)+c^2(a+b)=2b^2(a+c)

or c^2(a+b)-b^2(a+c)=b^2(a+c)-a^2(b+c)

i.e. a^2(b+c),b^2(c+a) and c^2(a+b) are in A.P.