1cosθ+3sinθtanθ+4=0 can be expressed as 3cos2θ4cosθ4=0. Hence solve the equation 1cosθ+3sinθtanθ+4=0 for 0θ360 ?

2 Answers
Nov 23, 2017

x=131.8 or x=228.2

Explanation:

1cosθ+3sinθ×sinθcosθ+4=0

1cosθ+3sin2θcosθ+4cosθcosθ=0

1+3(1cos2θ)+4cosθcosθ=0

3cos2θ+4cosθ+4cosθ=0

3cos2θ+4cosθ+4=0multiply by - 1

3cos2θ4cosθ4=0

using 3cos2θ4cosθ4=0 to solve

3cos2θ+2cosθ6cosθ4=0split cosθ term

cosθ(3cosθ+2)2(3cosθ+2)=0grouping

(cosθ+2)(3cosθ+2)=0

equate each factor to zero and solve for θ

cosθ+2=0cosθ=2no solution

3cosθ+2=0cosθ=23

cosθ<0θ in second/third quadrants

θ=cos1(23)=48.2related acute angle

θ=(18048.2)=131.8

θ=(180+48.2)=228.2

Nov 23, 2017

1cosθ+3sinθtanθ+4=0

1cosθ+3sinθsinθcosθ+4=0

1+3sin2θ+4cosθ=0

1+3(1cos2θ)+4cosθ=0

3cos2θ4cosθ4=0

3cos2θ6cosθ+2cosθ4=0

3cosθ(cosθ2)+2(cosθ2)=0

(3cosθ+2)(cosθ2)=0

cosθ=2 not possible

So cosθ=23=cos131.8=cos(360131.8)

Hence

θ=131.8andθ=228.2