1/costheta+3sinthetatantheta+4=0 can be expressed as 3cos^2theta - 4costheta -4=0. Hence solve the equation 1/costheta+3sinthetatantheta+4=0 for 0<=theta<=360 ?
2 Answers
Explanation:
1/costheta+3sinthetaxxsintheta/costheta+4=0
rArr1/costheta+(3sin^2theta)/costheta+(4costheta)/costheta=0
rArr(1+3(1-cos^2theta)+4costheta)/costheta=0
rArr(-3cos^2theta+4costheta+4)/costheta=0"
rArr-3cos^2theta+4costheta+4=0larrcolor(blue)"multiply by - 1"
rArr3cos^2theta-4costheta-4=0
"using "3cos^2theta-4costheta-4=0" to solve"
3cos^2theta+2costheta-6costheta-4=0larr"split "costheta" term"
color(red)(costheta)(3costheta+2)color(red)(-2)(3costheta+2)=0larr"grouping"
rArr(costheta+2)(color(red)(3costheta+2))=0
"equate each factor to zero and solve for "theta
costheta+2=0tocostheta=-2larrcolor(red)"no solution"
3costheta+2=0tocostheta=-2/3
costheta<0rArrthetacolor(blue)" in second/third quadrants"
theta=cos^-1(2/3)=48.2^@larrcolor(red)"related acute angle"
rArrtheta=(180-48.2)^@=131.8^@
rArrtheta=(180+48.2)^@=228.2^@
So
Hence