#1/costheta+3sinthetatantheta+4=0# can be expressed as #3cos^2theta - 4costheta -4=0#. Hence solve the equation #1/costheta+3sinthetatantheta+4=0# for #0<=theta<=360# ?
2 Answers
Explanation:
#1/costheta+3sinthetaxxsintheta/costheta+4=0#
#rArr1/costheta+(3sin^2theta)/costheta+(4costheta)/costheta=0#
#rArr(1+3(1-cos^2theta)+4costheta)/costheta=0#
#rArr(-3cos^2theta+4costheta+4)/costheta=0"#
#rArr-3cos^2theta+4costheta+4=0larrcolor(blue)"multiply by - 1"#
#rArr3cos^2theta-4costheta-4=0#
#"using "3cos^2theta-4costheta-4=0" to solve"#
#3cos^2theta+2costheta-6costheta-4=0larr"split "costheta" term"#
#color(red)(costheta)(3costheta+2)color(red)(-2)(3costheta+2)=0larr"grouping"#
#rArr(costheta+2)(color(red)(3costheta+2))=0#
#"equate each factor to zero and solve for "theta#
#costheta+2=0tocostheta=-2larrcolor(red)"no solution"#
#3costheta+2=0tocostheta=-2/3#
#costheta<0rArrthetacolor(blue)" in second/third quadrants"#
#theta=cos^-1(2/3)=48.2^@larrcolor(red)"related acute angle"#
#rArrtheta=(180-48.2)^@=131.8^@#
#rArrtheta=(180+48.2)^@=228.2^@#
So
Hence