1cosθ+3sinθtanθ+4=0 can be expressed as 3cos2θ−4cosθ−4=0. Hence solve the equation 1cosθ+3sinθtanθ+4=0 for 0≤θ≤360 ?
2 Answers
Explanation:
1cosθ+3sinθ×sinθcosθ+4=0
⇒1cosθ+3sin2θcosθ+4cosθcosθ=0
⇒1+3(1−cos2θ)+4cosθcosθ=0
⇒−3cos2θ+4cosθ+4cosθ=0
⇒−3cos2θ+4cosθ+4=0←multiply by - 1
⇒3cos2θ−4cosθ−4=0
using 3cos2θ−4cosθ−4=0 to solve
3cos2θ+2cosθ−6cosθ−4=0←split cosθ term
cosθ(3cosθ+2)−2(3cosθ+2)=0←grouping
⇒(cosθ+2)(3cosθ+2)=0
equate each factor to zero and solve for θ
cosθ+2=0→cosθ=−2←no solution
3cosθ+2=0→cosθ=−23
cosθ<0⇒θ in second/third quadrants
θ=cos−1(23)=48.2∘←related acute angle
⇒θ=(180−48.2)∘=131.8∘
⇒θ=(180+48.2)∘=228.2∘
So
Hence