1/costheta+3sinthetatantheta+4=0 can be expressed as 3cos^2theta - 4costheta -4=0. Hence solve the equation 1/costheta+3sinthetatantheta+4=0 for 0<=theta<=360 ?

2 Answers
Nov 23, 2017

x=131.8^@" or "x=228.2^@

Explanation:

1/costheta+3sinthetaxxsintheta/costheta+4=0

rArr1/costheta+(3sin^2theta)/costheta+(4costheta)/costheta=0

rArr(1+3(1-cos^2theta)+4costheta)/costheta=0

rArr(-3cos^2theta+4costheta+4)/costheta=0"

rArr-3cos^2theta+4costheta+4=0larrcolor(blue)"multiply by - 1"

rArr3cos^2theta-4costheta-4=0

"using "3cos^2theta-4costheta-4=0" to solve"

3cos^2theta+2costheta-6costheta-4=0larr"split "costheta" term"

color(red)(costheta)(3costheta+2)color(red)(-2)(3costheta+2)=0larr"grouping"

rArr(costheta+2)(color(red)(3costheta+2))=0

"equate each factor to zero and solve for "theta

costheta+2=0tocostheta=-2larrcolor(red)"no solution"

3costheta+2=0tocostheta=-2/3

costheta<0rArrthetacolor(blue)" in second/third quadrants"

theta=cos^-1(2/3)=48.2^@larrcolor(red)"related acute angle"

rArrtheta=(180-48.2)^@=131.8^@

rArrtheta=(180+48.2)^@=228.2^@

Nov 23, 2017

1/costheta+3sinthetatantheta+4=0

=>1/costheta+3sintheta*sintheta/costheta+4=0

=>1+3sin^2theta+4costheta=0

=>1+3(1-cos^2theta)+4costheta=0

=>3cos^2theta-4costheta-4=0

=>3cos^2theta-6costheta+2costheta-4=0

=>3costheta(costheta-2)+2(costheta-2)=0

=>(3costheta+2)(costheta-2)=0

costheta=2 not possible

So costheta=-2/3=cos131.8^@=cos(360-131.8)^@

Hence

theta=131.8^@ and theta=228.2^@