(1 + sec^2x) / (1 + tan^2x) = 1 + cos^2x ?
1 Answer
Feb 21, 2017
See explanation...
Explanation:
Use:
sec x = 1/cos x
tan x = sin x / cos x
cos^2 x + sin^2 x = 1
Then:
(1+sec^2x)/(1+tan^2x) = (1+sec^2x)/(1+tan^2x)*cos^2x/cos^2x
color(white)((1+sec^2x)/(1+tan^2x)) = (cos^2x+1)/(cos^2x+sin^2x)
color(white)((1+sec^2x)/(1+tan^2x)) = (cos^2x+1)/1
color(white)((1+sec^2x)/(1+tan^2x)) = 1+cos^2x