(1 + sec^2x) / (1 + tan^2x) = 1 + cos^2x ?

1 Answer
Feb 21, 2017

See explanation...

Explanation:

Use:

sec x = 1/cos x

tan x = sin x / cos x

cos^2 x + sin^2 x = 1

Then:

(1+sec^2x)/(1+tan^2x) = (1+sec^2x)/(1+tan^2x)*cos^2x/cos^2x

color(white)((1+sec^2x)/(1+tan^2x)) = (cos^2x+1)/(cos^2x+sin^2x)

color(white)((1+sec^2x)/(1+tan^2x)) = (cos^2x+1)/1

color(white)((1+sec^2x)/(1+tan^2x)) = 1+cos^2x