14.How would you solve this?

enter image source here

1 Answer
Dec 18, 2017

0.π2,π4,3π4

Explanation:

Let u=2x

3sin(3u)+3sin(u)

Using identity:

sin(3x)=sin3(x)+3cos2(x)sin(x)

3(sin3(u)+3cos2(u)sin(u))+3sin(u)

Factor:

3sin(u)(sin2(u)+3cos2(u)+1)=0

3sin(u)=0

sin(u)=0u=0,π

But u=2x8888 , so x=02,π2

sin2(u)+3cos2(u)+1=0

Identity:

1sin2(u)=cos2(u)

cos2(u)+3cos2(u)=0

4cos2(u)=0

cos2(u)=0u=π2,3π2

But u=2x8888, so x=π4,3π4