Let #u=2x#
#3sin(3u)+3sin(u)#
Using identity:
#color(red)(sin(3x)=-sin^3(x)+3cos^2(x)sin(x))#
#3(-sin^3(u)+3cos^2(u)sin(u))+3sin(u)#
Factor:
#3sin(u)(-sin^2(u)+3cos^2(u)+1)=0#
#3sin(u)=0#
#sin(u)=0=>u=0, pi#
But #u=2xcolor(white)(8888)# , so #x=color(blue)(0/2, pi/2)#
#-sin^2(u)+3cos^2(u)+1=0#
Identity:
#color(red)(1-sin^2(u)=cos^2(u))#
#cos^2(u)+3cos^2(u)=0#
#4cos^2(u)=0#
#cos^2(u)=0=>u=pi/2, (3pi)/2#
But #u=2xcolor(white)(8888)#, so #x=color(blue)(pi/4 , (3pi)/4)#