14.How would you solve this?

enter image source here

1 Answer
Dec 18, 2017

color(blue)(0 . pi/2 , pi/4 , (3pi)/4)

Explanation:

Let u=2x

3sin(3u)+3sin(u)

Using identity:

color(red)(sin(3x)=-sin^3(x)+3cos^2(x)sin(x))

3(-sin^3(u)+3cos^2(u)sin(u))+3sin(u)

Factor:

3sin(u)(-sin^2(u)+3cos^2(u)+1)=0

3sin(u)=0

sin(u)=0=>u=0, pi

But u=2xcolor(white)(8888) , so x=color(blue)(0/2, pi/2)

-sin^2(u)+3cos^2(u)+1=0

Identity:

color(red)(1-sin^2(u)=cos^2(u))

cos^2(u)+3cos^2(u)=0

4cos^2(u)=0

cos^2(u)=0=>u=pi/2, (3pi)/2

But u=2xcolor(white)(8888), so x=color(blue)(pi/4 , (3pi)/4)