Question #81bd2

1 Answer
Aug 23, 2015

Solve cos (x + 30) - sin x = 1/2

Ans: 13.22 and -133.22 deg

Explanation:

Apply the sum cosine trig identity:
cos (x + 30) = sqrt3/2cos x - 1/2 sin x. The main equation becomes;
(sqrt3/2)cos x - (3/2)sin x = 1/2
sqrt3cos x - 3sin x = 1. Divide both side by sqrt3
cos x - sqrt3sin x = 1/sqrt3
Replace in the left side: sqrt3 by tan 60 = sin 60/cos 60, we get:
cos x.cos 60 - sin 60.sin x = cos 60/sqrt3
cos (x + 60) = 1/(2sqrt3) = 0.29 . Calculator gives -->
(x + 60) = +- 73.22 deg

a. x + 60 = 73.22 --> x = 73.22 - 60 = 13.32 deg
b. x + 60 = - 73.22 --> x = -73.22 - 60 = -133.22 deg

Check by calculator:
x = 13.22 --> cos (x + 30) = 0.73 --> sin 13.22 = 0.13.
we get: 0.73 - 0.13 = 0.50. OK
x = -133.32 --> sin x = 0.73 --> cos (x + 30) = cos (-103.22) = -0.23.
We get: -0.23 + 0.73 = 0.50. OK