Question #e30bc

1 Answer
Feb 17, 2017

int_0^x [t]dt = ( [x] (2x- [x]-1))/2 for x > 0

Explanation:

Define the function as:

[x] = n for n<=x<(n+1)

The function is continuous almost everywhere, that is in all RR-ZZ

Consider x>0 and [x] = N, its integral can be calculated as:

int_0^x [t]dt = int_0^1 0*dt + int_1^2 1*dt + ... + int_(N-1)^N (N-1)dt + int_N^x Ndt

int_0^x [t]dt = 1+2+...+(N-1)+N(x-N)

int_0^x [t]dt = (N(N-1))/2 +Nx-N^2

int_0^x [t]dt = (N^2-N+2Nx-2N^2)/2

int_0^x [t]dt = (N(2x-1)-N^2)/2

int_0^x [t]dt = (N(2x-N-1))/2

Consider x<0 and [x] = -N, its integral can be calculated as:

int_0^x [t]dt = -int_x^(-N) (-N-1)*dt - int_(-N)^(-N+1) -N*dt + ... - int_(-1)^0 (-1)dt

int_0^x [t]dt = 1+2+...+N+(N+1)(x-N)

int_0^x [t]dt = (N(N+1))/2 +Nx-N^2+x-N

int_0^x [t]dt = (N^2+N+2Nx-2N^2+2x-2N)/2

int_0^x [t]dt = (N(2x-1)-N^2+2x)/2

int_0^x [t]dt = x+(N(2x-N-1))/2