Prove that cos 3x = 4cos^3 x - 3cos x ?

1 Answer

Prove cos 3x = 4cos^3 x - 3cos x

Explanation:

Apply the trig identities:

  • cos (a + b) = cos a * cos b - sin a * sin b
  • cos 2x = 2cos^2 x - 1
  • sin 2x = 2sin x * cos x

We get:

cos 3x = cos (x + 2x) = cos x * cos 2x - sin x * sin 2x

= cos x(2cos^2 x - 1) - 2sin^2 x * cos x

= 2cos^3 x - cos x - 2cos x(1 - cos^2 x)

= 2cos^3 x - cos x - 2cos x + 2cos^3 x

So

cos 3x = 4cos^3 x - 3cos x