How do you find the derivative of y=secx1+tanx?

1 Answer
Dec 1, 2016

dydx=sinxcosx(sinx+cosx)2

Explanation:

First of all, I'm assuming the function is y=secx1+tanx? Call your function f(x).

f(x)=secx1+tanx

f(x)=1cosx1+sinxcosx

f(x)=1cosxcosx+sinxcosx

f(x)=1cosx×cosxcosx+sinx

f(x)=1cosx+sinx

f(x)=(cosx+sinx)1

We let y=u1 and u=cosx+sinx. Then dydu=1u2 and dudx=sinx+cosx.

The chain rule states that dydx=dydu×dudx.

dydx=1u2×sinx+cosx

dydx=sinxcosx(sinx+cosx)2

Hopefully this helps!