How do you find the derivative of y=secx1+tanx?
1 Answer
Dec 1, 2016
Explanation:
First of all, I'm assuming the function is
f(x)=secx1+tanx
f(x)=1cosx1+sinxcosx
f(x)=1cosxcosx+sinxcosx
f(x)=1cosx×cosxcosx+sinx
f(x)=1cosx+sinx
f(x)=(cosx+sinx)−1
We let
The chain rule states that
dydx=−1u2×−sinx+cosx
dydx=sinx−cosx(sinx+cosx)2
Hopefully this helps!