How do you balance the equation: (A)FeSO_4+(B)KMnO+(C)H_2SO_4 -> (D)Fe_2(SO_4)_3+(E)K_2SO_4+(F)MnSO_4+(G)H_2O ?

1 Answer
Feb 29, 2016

10FeSO_4+2KMnO+8H_2SO_4 -> 5Fe_2(SO_4)_3+K_2SO_4+2MnSO_4+8H_2O

Explanation:

Let's eliminate unknowns backwards, starting with G.

From the equations for H, Mn, K and Fe we find:

G=C

F=B

E=1/2 B

D=1/2 A

Substituting these in the remaining equations we get:

S: A+C=3(1/2 A)+(1/2 B)+B = 3/2A + 3/2B

O: 4A+4B+4C = 12 (1/2 A)+4 (1/2 B)+4B+C = 6A + 6B+C

Subtracting A from both sides of the equation for S we get:

C=1/2A+3/2B

Substitute this in our equation for O to get:

4A+4B+4(1/2A+3/2B) = 6A+6B+(1/2A+3/2B)

That is:

6A+10B = 13/2A+15/2B

Multiplying both sides by 2 that becomes:

12A+20B = 13A+15B

Subtract 12A+15B from both sides to get:

5B=A

So if we put B=2 then we get:

A=5B=10

B=2

C=1/2A+3/2B=5+3=8

D=1/2A = 5

E=1/2B = 1

F=B=2

G=C=8

So:

10FeSO_4+2KMnO+8H_2SO_4 -> 5Fe_2(SO_4)_3+K_2SO_4+2MnSO_4+8H_2O