How do you balance the equation: (A)FeSO_4+(B)KMnO+(C)H_2SO_4 -> (D)Fe_2(SO_4)_3+(E)K_2SO_4+(F)MnSO_4+(G)H_2O ?
1 Answer
10FeSO_4+2KMnO+8H_2SO_4 -> 5Fe_2(SO_4)_3+K_2SO_4+2MnSO_4+8H_2O
Explanation:
Let's eliminate unknowns backwards, starting with
From the equations for
G=C
F=B
E=1/2 B
D=1/2 A
Substituting these in the remaining equations we get:
S: A+C=3(1/2 A)+(1/2 B)+B = 3/2A + 3/2B
O: 4A+4B+4C = 12 (1/2 A)+4 (1/2 B)+4B+C = 6A + 6B+C
Subtracting
C=1/2A+3/2B
Substitute this in our equation for
4A+4B+4(1/2A+3/2B) = 6A+6B+(1/2A+3/2B)
That is:
6A+10B = 13/2A+15/2B
Multiplying both sides by
12A+20B = 13A+15B
Subtract
5B=A
So if we put
A=5B=10
B=2
C=1/2A+3/2B=5+3=8
D=1/2A = 5
E=1/2B = 1
F=B=2
G=C=8
So:
10FeSO_4+2KMnO+8H_2SO_4 -> 5Fe_2(SO_4)_3+K_2SO_4+2MnSO_4+8H_2O