To Prove #(tanx+cotx)^4=csc^4 x cdot sec^4 x#
LHS #=(tanx+cotx)^4#
write #tanx and cot x# in terms of #sin and cos#
LHS #=(sinx/cosx+cosx/sinx)^4#, simplify #=> ((sinx xxsinx+cosx xxcosx)/(cosx cdot sinx))^4# #=> ((sin^2x +cos^2x)/(cosx cdot sinx))^4#, Use Identity #sin^2x +cos^2x=1# #=> (1/(cosx cdot sinx))^4# by definition of #sec and csc# #=> (sec x cdotcscx)^4# #=> sec^4 x cdotcsc^4x =#RHS