Question #a407d

2 Answers
Jun 1, 2016

x^2014+x^2013=-x^2015=-x^2012

Explanation:

Take the expression x^2014+x^2013 and factor x^2012 from each term.

x^2014+x^2013=x^2012(x^2+x)

Note that from the equation x^2+x+1=0 we can state that x^2+x=-1. Thus,

x^2012(x^2+x)=x^2012(-1)=-x^2012


Alternatively, start by factoring x^2013 from both terms.

x^2014+x^2013=x^2013(x+1)

From x^2+x+1=0 we see that x+1=-x^2, so:

x^2013(x+1)=x^2013(-x^2)=-x^2015


Another method:

x^2014+x^2013=x^2014+x^2013+x^2012-x^2012

Factor x^2012 from the first three terms:

x^2014+x^2013+x^2012-x^2012=x^2012(x^2+x+1)-x^2012

Since x^2+x+1=0, this equals

x^2012(x^2+x+1)-x^2012=0-x^2012=-x^2012


Similar to this, we can add and subtract x^2015:

x^2014+x^2013=x^2015+x^2014+x^2013-x^2015

Factor x^2013 from the first three terms:

x^2015+x^2014+x^2013-x^2015=x^2013(x^2+x+1)-x^2015

Using the same logic as before,

x^2013(x^2+x+1)-x^2015=-x^2015

Jun 1, 2016

x^2014+x^2013 = x+1 = (1+- isqrt3)/2

Explanation:

x^2+x+1 is the quadratic factor of x^3-1.

So x^2+x+1 = 0 implies that x^3-1=0.

(If necessary for clarity, multiply both sides by x-1.)

So we see that x^3=1.

2013/3=671, so

x^2013 = (x^3)^671 = 1^671 = 1

Method 1

x^2014 = x*x^2013 = x*1=x

x^2014 + x^2013 = x+1

Method 2

x^2014+x^2013 = x^2013(x+1) = 1*(x+1) = x+1

If you want a numerical answer , solve x^2+x+1=0 for x = (-1+-isqrt3)/2

We conclude with

x+1 = (1+- isqrt3)/2.