How do you simplify the following?
-
(1-sin^2 x)/(sin x + 1)
-
(tan x)(1-sin^2 x)
-
(1-sin^2 x)/(sin x + 1) -
(tan x)(1-sin^2 x)
1 Answer
Mar 26, 2016
-
(1-sin^2 x)/(sin x + 1) = 1 - sin x whenx != (3pi)/2 + 2kpi -
(tan x)(1 - sin^2 x) = 1/2 sin 2x whenx != kpi
Explanation:
Example 1.
Use the difference of squares identity:
a^2-b^2 = (a-b)(a+b)
with
(1-sin^2 x)/(sin x + 1) = ((1-sin x)color(red)(cancel(color(black)((1+sin x)))))/color(red)(cancel(color(black)((1+sin x)))) = 1 - sin x
with exclusion
Example 2.
Use the following:
sin^2 x + cos^2 x = 1 in the form1 - sin^2 x = cos^2 x
tan x = (sin x)/(cos x)
sin 2x = 2 sin x cos x
as follows:
(tan x)(1 - sin^2 x) =(sin x)/(cos x)*cos^2 x = sin x cos x = 1/2 sin 2x
with exclusion