Question #0b243

1 Answer
Nov 15, 2017

1/4ln2.

Explanation:

Let, I=int_0^(pi/12) tan4xdx.

By the Fundamental Theorem of Calculus, we know that,

intf(x)dx=F(x)+C rArr int_a^bf(x)dx=[F(x)]_a^b=F(b)-F(a).

Now, inttan4xdx=1/4ln|sec4x|+C.

:. int_0^(pi/12)tan4xdx=[1/4ln|sec4x|]_0^(pi/12),

=1/4[ln|sec(4*pi/12)|-ln|sec0|],

=1/4[ln|sec(pi/3)|-ln|1|],

=1/4[ln|2|-0],

rArr int_0^(pi/12)tan4xdx=1/4ln2.