Question #7218e Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bdub Apr 16, 2016 See below Explanation: LHS=left hand side, RHS =right hand side LHS=(sin(2x+x))/(1+2cos2x) =(sin2xcosx+cos2xsinx)/(1+2cos2x) =((2sinxcosx)cosx+(1-2sin^2x)sinx)/(1+2cos2x) =(2sinxcos^2x+sinx-2sin^3x)/(1+2(1-2sin^2x)) =(2sinx(1-sin^2x)+sinx-2sin^3x)/(1+2-4sin^2x) =(2sinx-2sin^3x+sinx-2sin^3x)/(3-4sin^2x) =(3sinx-4sin^3x)/(3-4sin^2x) =(sinx(3-4sin^2x))/(3-4sin^2x) =sinx =RHS Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? See all questions in Proving Identities Impact of this question 2001 views around the world You can reuse this answer Creative Commons License