Question #cab60

2 Answers
Apr 15, 2016

Recall the following identities:

1. color(red)(secx=1/cosx)

2. color(darkorange)(tanx=sinx/cosx)

3. color(blue)(cotx=cosx/sinx)

4. color(purple)(sin^2x+cos^2x=1)

Given the following identity, start the proof by working on the left side.

secx/cosx-tanx/cotx=1

Left side:

(color(red)(1/cosx))/cosx-(color(darkorange)(sinx/cosx))/(color(blue)(cosx/sinx))

=1/cosx*1/cosx-sinx/cosx*sinx/cosx

=1/cos^2x-sin^2x/cos^2x

=(color(purple)(1-sin^2x))/cos^2x

=cos^2x/cos^2x

=color(green)(|bar(ul(color(white)(a/a)1color(white)(a/a)|)))

:., left side=right side.

Apr 15, 2016

secx/cosx -tan x/cot x

=sec^2 x - tan^2 x

=1

Explanation:

LHS: secx/cosx -tan x/cot x

=secx xx 1/cosx - tan x xx 1/cot x

=secx xx secx - tan x xx tan x

=sec^2 x - tan^2 x

=1