Question #cab60
2 Answers
Apr 15, 2016
Recall the following identities:
1. color(red)(secx=1/cosx)
2. color(darkorange)(tanx=sinx/cosx)
3. color(blue)(cotx=cosx/sinx)
4. color(purple)(sin^2x+cos^2x=1)
Given the following identity, start the proof by working on the left side.
secx/cosx-tanx/cotx=1
Left side:
(color(red)(1/cosx))/cosx-(color(darkorange)(sinx/cosx))/(color(blue)(cosx/sinx))
=1/cosx*1/cosx-sinx/cosx*sinx/cosx
=1/cos^2x-sin^2x/cos^2x
=(color(purple)(1-sin^2x))/cos^2x
=cos^2x/cos^2x
=color(green)(|bar(ul(color(white)(a/a)1color(white)(a/a)|)))
Apr 15, 2016
Explanation:
LHS: