Given tanx=9/40 and x->"In 3rd quadrant"
So x=pi+alpha."where alpha acute angle"
:.tanx=9/40=>tan(pi+alpha)=9/40
=>tanalpha=9/40
color(red)(2x=2pi+2alpha->"in 1st or in 2nd quadrant.")
color(blue)("So "sin2x" will be positive.")
Now
sin2x=sin(2pi+2alpha)=sin2alpha=(2tanalpha)/(1+tan^2alpha)
=(2*9/40)/(1+(9/40)^2)
=(2*9/40*40^2)/(40^2+9^2)
=720/1681
Now x/2=1/2(pi+alpha)=(pi/2+alpha/2)
:.tan(x/2)=tan(pi/2+alpha/2)=-cot(alpha/2)
Again tanalpha=9/40
=>(2tan(alpha/2))/(1-tan^2(alpha/2))=9/40
If tan(alpha/2)=a
then the above relation becomes
(2a)/(1-a^2)=9/40
=>9a^2+80a-9=0
=>a=(-80+sqrt(80^2-4*9*(-9)))/(2*9)
color(red)([a>0 " since " alpha/2 " acute"])
=(-80+82)/18=2/18=1/9
:.tan(alpha/2)=1/9
=>cot(alpha/2)=9
Hence tan(x/2)=-cot(alpha/2)=-9