Question #e50ba

1 Answer
Jul 25, 2016

Given tanx=9/40 and x->"In 3rd quadrant"
So x=pi+alpha."where alpha acute angle"

:.tanx=9/40=>tan(pi+alpha)=9/40
=>tanalpha=9/40

color(red)(2x=2pi+2alpha->"in 1st or in 2nd quadrant.")

color(blue)("So "sin2x" will be positive.")

Now
sin2x=sin(2pi+2alpha)=sin2alpha=(2tanalpha)/(1+tan^2alpha)

=(2*9/40)/(1+(9/40)^2)

=(2*9/40*40^2)/(40^2+9^2)

=720/1681

Now x/2=1/2(pi+alpha)=(pi/2+alpha/2)
:.tan(x/2)=tan(pi/2+alpha/2)=-cot(alpha/2)

Again tanalpha=9/40
=>(2tan(alpha/2))/(1-tan^2(alpha/2))=9/40

If tan(alpha/2)=a
then the above relation becomes
(2a)/(1-a^2)=9/40

=>9a^2+80a-9=0

=>a=(-80+sqrt(80^2-4*9*(-9)))/(2*9)

color(red)([a>0 " since " alpha/2 " acute"])

=(-80+82)/18=2/18=1/9
:.tan(alpha/2)=1/9
=>cot(alpha/2)=9

Hence tan(x/2)=-cot(alpha/2)=-9