Question #50e6d Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bdub May 4, 2016 see below Explanation: Left Side:=sinx1−cosx+1−cosxsinx =sinx⋅sinx+(1−cosx)⋅(1−cosx)sinx(1−cosx) =sin2x+1−2cosx+cos2xsinx(1−cosx) =sin2x+cos2x+1−2cosxsinx(1−cosx) =1+1−2cosxsinx(1−cosx) =2−2cosxsinx(1−cosx) =2(1−cosx)sinx(1−cosx) =21sinx =2cscx =Right Side Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove cscθ×tanθ=secθ? How do you prove (1−cos2x)(1+cot2x)=1? How do you show that 2sinxcosx=sin2x? is true for 5π6? How do you prove that secxcotx=cscx? How do you prove that cos2x(1+tan2x)=1? How do you prove that 2sinxsecx(cos4x−sin4x)=tan2x? How do you verify the identity: −cotx=sin3x+sinxcos3x−cosx? How do you prove that tanx+cosx1+sinx=secx? How do you prove the identity sinx−cosxsinx+cosx=2sin2x−11+2sinxcosx? See all questions in Proving Identities Impact of this question 1845 views around the world You can reuse this answer Creative Commons License