How do you write the partial fraction decomposition of the rational expression (2x^3+2x^2-9x-20)/((x^2-x-6)(x+2))?

1 Answer
Aug 1, 2017

(2x^3+2x^2-9x-20)/((x^2-x-6)(x+2))=2+1/(x-3)-3/(x+2)+2/(x+2)^2

Explanation:

Before we express in partial fractions, ensure that the degree of numerator is less than that of denominator.

(2x^3+2x^2-9x-20)/((x^2-x-6)(x+2))

= (2x^3+2x^2-9x-20)/(x^3+x^2-8x-12)

= 2+(7x+4)/(x^3+x^2-8x-12)

= 2+(7x+4)/((x-3)(x+2)(x+2))

= 2+(7x+4)/((x-3)(x+2)^2)

Now let (7x+4)/((x-3)(x+2)^2)-=A/(x-3)+B/(x+2)+C/(x+2)^2

or (7x+4)/((x-3)(x+2)^2)=(A(x+2)^2+B(x-3)(x+2)+C(x-3))/((x-3)(x+2)^2)

if x=3, then 25A=25 i.e. A=1

if x=-2, then -5C=-10 i.e. C=2

and comparing coefficients of x^2 on both sides

A+B+C=0 i.e. B=-3

Hence

(2x^3+2x^2-9x-20)/((x^2-x-6)(x+2))=2+1/(x-3)-3/(x+2)+2/(x+2)^2