How do you solve log_2((-9x)/(2x^2-1)) = 1 ?
1 Answer
May 30, 2016
Explanation:
log_2((-9x)/(2x^2-1)) = log_2(-9x)-log_2(2x^2-1) = 1 = log_2 2
Since
(-9x)/(2x^2-1) = 2
Multiplying both sides by
-9x = 4x^2-2
Add
4x^2+9x-2 = 0
Use the quadratic formula to find roots:
x = (-9+-sqrt(9^2-(4*4*-2)))/(2*4)
=(-9+-sqrt(81+32))/8
=(-9+-sqrt(123))/8
We can discard
That leaves