Prove that (cotx-tanx)/(sinx+cosx)=cscx-secx? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Shwetank Mauria May 3, 2016 Please see below. Explanation: (cotx-tanx)/(sinx+cosx) = (cosx/sinx-sinx/cosx)/(sinx+cosx) = ((cos^2x-sin^2x)/(sinxcosx))/(sinx+cosx) = ((cosx-sinx)(cosx+sinx))/(sinxcosx)xx1/(sinx+cosx) = ((cosx-sinx)cancel((cosx+sinx)))/(sinxcosx)xx1/cancel((sinx+cosx)) = ((cosx-sinx))/(sinxcosx) = cosx/(sinxcosx)-sinx/(sinxcosx) = 1/sinx-1/cosx = cscx-secx Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? See all questions in Proving Identities Impact of this question 4357 views around the world You can reuse this answer Creative Commons License