How do you complete the following division: (x^4 + x^3 - 5x^2 + 26x - 21)/(x^2 + 3x - 4)?

1 Answer
Dec 11, 2016

x^2 + 2x + 5 + 13/(5(x + 4)) + 2/(5(x - 1))

Explanation:

Divide the numerator by the denominator using long division.

enter image source here

So, (x^4 + x^3 - 5x^2 + 26x - 21)/(x^2 + 3x - 4) = x^2 + 2x + 5 + (3x - 1)/(x^2 + 3x - 4).

We can now start the actual partial fraction decomposition process.

x^2 + 3x - 4 can be factored as (x +4)(x -1).

A/(x + 4) + B/(x- 1) = (3x -1)/((x+ 4)(x - 1))

A(x - 1) + B(x +4) = 3x - 1

Ax - A + Bx + 4B = 3x - 1

(A + B)x + (4B - A) = 3x - 1

We now write a system of equations:

{(A + B = 3), (4B - A= -1):}

Solve:

B = 3 - A -> 4(3 - A) - A = -1

12 - 4A - A = -1

-5A = -13

A = 13/5

13/5 + B = 3

B = 2/5

Therefore, the partial fraction decomposition of (x^4 + x^3 - 5x^2 + 26x - 21)/(x^2 + 3x - 4) is x^2 + 2x + 5 + 13/(5(x + 4)) + 2/(5(x - 1)).

Hopefully this helps!