Question #fdebb

1 Answer
Sep 11, 2016

I got r=sqrt(a^2+b^2).

Explanation:

d/dx(e^(ax)cos(bx)) = ae^(ax)cos(bx)-be^(ax)sin(bx)

= e^(ax)[acos(bx)-bsin(bx)]

And

re^(ax)[cos(bx+tan^-1(b/a))] = re^(ax)[cos(bx) cos(tan^-1(b/a))-sin(bx) sin(tan^-1(b/a))]

Now, use trigonometry to get

cos(tan^-1(b/a)) = a/sqrt(a^2+b^2) and sin(tan^-1(b/a)) = b/sqrt(a^2+b^2)

So we have

re^(ax)[cos(bx+tan^-1(b/a))] = re^(ax)[cos(bx) (a/sqrt(a^2+b^2)))-sin(bx) (b/sqrt(a^2+b^2))]

= (re^(ax))/sqrt(a^2+b^2)[bcos(bx)-asin(bx)]

Setting the derivative above equal to this expression we get

e^(ax)[acos(bx)-bsin(bx)] = (re^(ax))/sqrt(a^2+b^2)[bcos(bx)-asin(bx)].

Which leads immediately to r=sqrt(a^2+b^2).