Question #71b42

1 Answer
Oct 12, 2017

The solution is y=1/2ln((1+x)/(1-x))

Explanation:

By definition

tanhx=sinhx/coshx

coshx=(e^x+e^-x)/2

sinhx=(e^x-e^-x)/2

If y=tanh^-1x

Then,

x=tanhy

=sinhy/coshy

=((e^y-e^-y)/2)/((e^y+e^-y)/2)

=((e^y-e^-y))/((e^y+e^-y))

=((e^y-1/e^y))/((e^y+1/e^y))

=(e^(2y)-1)/(e^(2y)+1)

So,

x((e^(2y)+1))=(e^(2y)-1)

xe^(2y)+x=e^(2y)-1

e^(2y)(1-x)=1+x

e^(2y)=(1+x)/(1-x)

Taking natural logs

ln(e^(2y))=ln((1+x)/(1-x))

2y=ln((1+x)/(1-x))

y=1/2ln((1+x)/(1-x))

Conditions .

AA x < |x|