Question #a26d7

1 Answer
Mar 14, 2017

y=+1.15x^2+3.85x-2

Explanation:

The quadratic is a parabolic equation. One of its standardised forms is:

y=ax^2+bx+c

We are given 3 points for (x,y)
There are 3 unknowns {a,b,c}

So we have 3 unknowns and 3 equations thus solvable.

Point A
P_A-> (1,3) ->3=a(1)^2+b(1)+c" "..............Equation(1)

Point B
P_B->(-4,1)->1=a(-4)^2+b(-4)+c" "..Equation(2)

Point C
P_C->(0,-2)->-2=a(0)^2+b(0)+c" ".......Equation(3)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determining the value of "c)

Consider equation(1) : this make life a bit easier as we can directly read off the value of c

color(green)(-2=0+0+c => c=-2)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determining the value of "b)

Substituting for c we have:

3=a(1)^2+b(1)-2" "..............Equation(1)
1=a(-4)^2+b(-4)-2" "......Equation(2)

3=a+b-2" "..............Equation(1)
1=16a-4b-2" ".........Equation(2)

To find b we need to get rid of a so multiply equation (1) by 16 and then subtract

48=16a+16b-32" ".....................Equation(1_a)
ul(color(white)(4)1=16a-color(white)(1)4b-2)" "larr" subtract " Equation(2)
47=color(white)(.)0color(white)(.)+20b-30

color(green)(b=(47+30)/20=3.85)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determining the value of "a)
Substitute for b and c in equation (say ) 1: looks easiest

3=a+b+c" "->3=a+3.85-2

color(green)(a=+1.15)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

y=+1.15x^2+3.85x-2

Tony B