If tanx=-12/5, find ((cosx-1)(cosx+1))/((sinx-1)(sinx+1))?

2 Answers
Jun 29, 2016

((cosx-1)(cosx+1))/((sinx-1)(sinx+1))=144/25

Explanation:

As tanx=-12/5, we have

cosx=1/secx=1/sqrt(sec^2x)=1/sqrt(1+tan^2x)

= 1/sqrt(1+(-12/5)^2)=1/sqrt(1+144/25)=1/sqrt(169/25)

= +-1/(13/5)=+-5/13 and

sinx=sinx/cosx xxcosx=tanx xxcosx=-12/5xx(+-5/13)=+-12/13

or cos^2x=25/169 and sin^2x=144/169

Hence ((cosx-1)(cosx+1))/((sinx-1)(sinx+1))

= (cos^2x-1)/(sin^2x-1)=(25/169-1)/(144/169-1)

= (-144/169)/(-25/169)=-144/169xx-169/25=144/25

Jun 29, 2016

144/25

Explanation:

((cosx-1)(cosx+1))/((sinx-1)(sinx+1))

=-((1-cosx)(1+cosx))/-((1-sinx)(1+sinx))
=(1-cos^2x)/(1-sin^2x)

=sin^2x/cos^2x=tan^2x=(-12/5)^2=144/25