Solve the differential equation (dy)/(dx) + x tan(y+x) = 1 ?

1 Answer
Jun 4, 2016

One solution is y(x) = x + arcsin(e^{-1/2x^2+C})

Explanation:

First we make the variable change z(x) = y(x)-x and

(dz)/(dx) = (dy)/(dx)-1

substituting

1 + (dz)/(dx) + x tan(z) = 1 equiv (dz)/(dx) + x tan(z) = 0

grouping

(dz)/(tan(z))=-x dx equiv d/(dx)(log_e(sin(z)))=-d/dx(1/2x^2)
log_e sin(z) = -1/2 x^2+ C->sin(z) = e^{-1/2x^2+C}

and finally

z(x) = y(x)-x = arcsin(e^{-1/2x^2+C})

then

y(x) = x + arcsin(e^{-1/2x^2+C})