Question #bc6c7

1 Answer
Aug 27, 2016

Integrate by parts and exploit the fact the integral repeats itself. Answer is:

I=1/4ln^2x+c

Explanation:

The integral is equal to:

I=intlnsqrt(x)/xdx

Use sqrt(x)=x^(1/2) and lnx^a=alnx

I=intlnx^(1/2)/xdx=int1/2lnx/xdx=1/2intlnx*1/xdx=

=1/2intlnx*(lnx)'dx

Use integration by parts:

I=1/2((lnx*lnx)-int(lnx)'*lnxdx)=

=1/2(ln^2x-int1/xlnxdx)=1/2ln^2x-1/2intlnx/xdx=

=1/2ln^2x-intlnx^(1/2)/xdx=1/2ln^2x-intlnsqrt(x)/xdx

Noticing the last integral is equal to the original:

I=intlnsqrt(x)/xdx

Therefore:

I=1/2ln^2x-I

I+I=1/2ln^2x

2I=1/2ln^2x

I=1/4ln^2x

Adding the constant of integration:

I=1/4ln^2x+c