What is the first differential of y= e^sinsqrtxy=esinx ?

1 Answer
Jan 7, 2017

dy/dx=(e^(sin(sqrtx))*cos(sqrtx))/(2sqrtx)dydx=esin(x)cos(x)2x

Explanation:

y= e^sinsqrtxy=esinx

Applying the chain rule:

dy/dx=e^(sin(sqrtx)) * d/dx(sin(sqrtx))dydx=esin(x)ddx(sin(x))

Applying the chain rule again:

dy/dx=e^(sin(sqrtx)) * cos(sqrtx) * d/dx(sqrtx)dydx=esin(x)cos(x)ddx(x)

Applying the power rule:

dy/dx=e^(sin(sqrtx)) * cos(sqrtx) * 1/2x^(-1/2)dydx=esin(x)cos(x)12x12

dy/dx=(e^(sin(sqrtx))*cos(sqrtx))/(2sqrtx)dydx=esin(x)cos(x)2x