How do you factorise 3a^2+4ab+b^2-2ac-c^23a2+4ab+b22acc2 ?

3 Answers
Feb 16, 2017

3a^2+4ab+b^2-2ac-c^2 = (3a+b+c)(a+b-c)3a2+4ab+b22acc2=(3a+b+c)(a+bc)

Explanation:

Given:

3a^2+4ab+b^2-2ac-c^23a2+4ab+b22acc2

Note that all of the terms are of degree 22.

So if this factors into simpler polynomials then its factors are homogeneous of degree 11.

If we ignore the terms involving aa, then we are looking for a factorisation of b^2-c^2b2c2, which can be written:

b^2-c^2 = (b-c)(b+c)b2c2=(bc)(b+c)

If we ignore the terms involving cc, then we find a factorisation:

3a^2+4ab+b^2 = (3a+b)(a+b)3a2+4ab+b2=(3a+b)(a+b)

If we ignore the terms involving bb, then we find a factorisation:

3a^2-2ac-c^2 = (3a+c)(a-c)3a22acc2=(3a+c)(ac)

These various linear binomial factors can be combined as follows:

(b+c), (3a+b), (3a+c) rarr (3a+b+c)(b+c),(3a+b),(3a+c)(3a+b+c)

(b-c), (a+b), (a-c) rarr (a+b-c)(bc),(a+b),(ac)(a+bc)

Hence we find the factorisation:

3a^2+4ab+b^2-2ac-c^2 = (3a+b+c)(a+b-c)3a2+4ab+b22acc2=(3a+b+c)(a+bc)

Jul 12, 2017

3a^2+4ab+b^2-2ac-c^23a2+4ab+b22acc2

=(4a^2+4ab+b^2)-(a^2+2ac+c^2)(4a2+4ab+b2)(a2+2ac+c2)

=(2a+b)^2-(a+c)^2(2a+b)2(a+c)2

=(2a+b+a+c)*(2a+b-a-c)(2a+b+a+c)(2a+bac)

=(3a+b+c)*(a+b-c)(3a+b+c)(a+bc)

Explanation:

1) I added and subtracted a^2 for resembling difference of squares.

2) I used u^2-v^2=(u+v)*(u-v)u2v2=(u+v)(uv) identity.

Apr 25, 2018

(a+b-c)(3a+b+c)(a+bc)(3a+b+c).

Explanation:

Here is another way to factorise the poly.

ul(3a^2+4ab+b^2)-2ac-c^2,

=(3a+b)(a+b)-2ac-c^2.

So, if we subst. x=3a+b, and, y=a+b, then, since,

x-y=(3a+b)-(a+b)=2a.

:. 3a^2+4ab+b^2-2ac-c^2,

=(3a+b)(a+b)-2ac-c^2,

=xy-(x-y)c-c^2,

=ul(xy-cx)+ul(cy-c^2),

=x(y-c)+c(y-c),

=(y-c)(x+c),

=(a+b-c)(3a+b+c), as respected George C. and Cem

Sentin have already derived!

Enjoy Maths!