How do you factor completely 2x^3+2x^2+3x+22x3+2x2+3x+2 ?

1 Answer
Sep 6, 2017

2x^3+2x^2+3x+2 = 2(x-x_1)(x-x_2)(x-x_3)2x3+2x2+3x+2=2(xx1)(xx2)(xx3)

where x_1, x_2, x_3x1,x2,x3 are derived below...

Explanation:

Given:

f(x) = 2x^3+3x^2+2x+2f(x)=2x3+3x2+2x+2

color(white)()
Discriminant

The discriminant Delta of a cubic polynomial in the form ax^3+bx^2+cx+d is given by the formula:

Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd

In our example, a=2, b=3, c=2 and d=2, so we find:

Delta = 36-64-216-432+432 = -244

Since Delta < 0 this cubic has 1 Real zero and 2 non-Real Complex zeros, which are Complex conjugates of one another.

color(white)()
Tschirnhaus transformation

To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.

0=4f(x)=8x^3+12x^2+8x+8

=(2x+1)^3+(2x+1)+6

=t^3+t+6

where t=(2x+1)

color(white)()
Cardano's method

We want to solve:

t^3+t+6=0

Let t=u+v.

Then:

u^3+v^3+(3uv+1)(u+v)+6=0

Add the constraint v=-1/(3u) to eliminate the (u+v) term and get:

u^3-1/(27u^3)+6=0

Multiply through by 27u^3 and rearrange slightly to get:

27(u^3)^2+162(u^3)-1=0

Use the quadratic formula to find:

u^3=(-162+-sqrt((162)^2-4(27)(-1)))/(2*27)

=(-162+-sqrt(26244+108))/54

=(-162+-sqrt(26352))/54

=(-162+-12sqrt(183))/54

=(-81+-6(183))/27

Since this is Real and the derivation is symmetric in u and v, we can use one of these roots for u^3 and the other for v^3 to find Real root:

t_1=1/3(root(3)(-81+6sqrt(183))+root(3)(-81-6sqrt(183)))

and related Complex roots:

t_2=1/3(omega root(3)(-81+6sqrt(183))+omega^2 root(3)(-81-6sqrt(183)))

t_3=1/3(omega^2 root(3)(-81+6sqrt(183))+omega root(3)(-81-6sqrt(183)))

where omega=-1/2+sqrt(3)/2i is the primitive Complex cube root of 1.

Now x=1/2(-1+t). So the zeros of our original cubic are:

x_1 = 1/6(-3+root(3)(-81+6sqrt(183))+root(3)(-81-6sqrt(183)))

x_2 = 1/6(-3+omega root(3)(-81+6sqrt(183))+omega^2 root(3)(-81-6sqrt(183)))

x_3 = 1/6(-3+omega^2 root(3)(-81+6sqrt(183))+omega root(3)(-81-6sqrt(183)))