How do you factor completely 2x^3+2x^2+3x+22x3+2x2+3x+2 ?
1 Answer
where
Explanation:
Given:
f(x) = 2x^3+3x^2+2x+2f(x)=2x3+3x2+2x+2
Discriminant
The discriminant
Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd
In our example,
Delta = 36-64-216-432+432 = -244
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
0=4f(x)=8x^3+12x^2+8x+8
=(2x+1)^3+(2x+1)+6
=t^3+t+6
where
Cardano's method
We want to solve:
t^3+t+6=0
Let
Then:
u^3+v^3+(3uv+1)(u+v)+6=0
Add the constraint
u^3-1/(27u^3)+6=0
Multiply through by
27(u^3)^2+162(u^3)-1=0
Use the quadratic formula to find:
u^3=(-162+-sqrt((162)^2-4(27)(-1)))/(2*27)
=(-162+-sqrt(26244+108))/54
=(-162+-sqrt(26352))/54
=(-162+-12sqrt(183))/54
=(-81+-6(183))/27
Since this is Real and the derivation is symmetric in
t_1=1/3(root(3)(-81+6sqrt(183))+root(3)(-81-6sqrt(183)))
and related Complex roots:
t_2=1/3(omega root(3)(-81+6sqrt(183))+omega^2 root(3)(-81-6sqrt(183)))
t_3=1/3(omega^2 root(3)(-81+6sqrt(183))+omega root(3)(-81-6sqrt(183)))
where
Now
x_1 = 1/6(-3+root(3)(-81+6sqrt(183))+root(3)(-81-6sqrt(183)))
x_2 = 1/6(-3+omega root(3)(-81+6sqrt(183))+omega^2 root(3)(-81-6sqrt(183)))
x_3 = 1/6(-3+omega^2 root(3)(-81+6sqrt(183))+omega root(3)(-81-6sqrt(183)))