Question #f3dd9

1 Answer
Jul 18, 2016

63^@43, and 243^@436343,and24343

Explanation:

tan x - sec x = 1
(sin x)/(cos x) - 1/(cos x) = 1sinxcosx1cosx=1
(sin x - cos x)/(cos x) = 1sinxcosxcosx=1
sin x - cos x = cos x
sin x - 2cos x = 0
Call t the arc whose tan t = 2 --> t = 63^@43t=6343
sin x - ((sin t)/(cos t))cos x = 0sinx(sintcost)cosx=0
sin x.cos t - sin t.cos x = sin (x - t)= 0
sin (x - 63.43) = 0
There are 2 solutions for the arc (x - 63^@43)(x6343)
a. x - 63.43 = 0 --> x = 63^@43
b. x - 63.43 = 180 --> x = 180 + 63.43 = 243^@43
Answers for (0, 2pi):(0,2π):
63^@436343, and 243^@4324343