Question #ea647 Trigonometry Trigonometric Identities and Equations Proving Identities 2 Answers P dilip_k Jul 21, 2016 #LHS=sinx(1+tanx)+cosx(1+cotx)# #=sinx(1+tanx)+cosx(1+1/tanx)# #=sinx(1+tanx)+cosx((1+tanx)/tanx)# #=(1+tanx)(sinx+cosx/tanx)# #=(1+tanx)(sinx+cosx/(sinx/cosx))# #=(1+tanx)(sinx+cos^2x/sinx)# #=(1+tanx)((sin^2x+cos^2x)/sinx)# #=(1+tanx)/sinx# #=1/sinx+cancel(sinx)/cosx*1/cancel(sinx)# #=cscx+secx=RHS# Proved Answer link P dilip_k Jul 21, 2016 #LHS=sinx(1+tanx)+cosx(1+cotx)# #=sinx+(sinx*sinx)/cosx+cosx+(cosx*cosx)/sinx# #=sinx+sin^2x/cosx+cosx+cos^2x/sinx# #=sinx+(1-cos^2x)/cosx+cosx+(1-sin^2x)/sinx# #=sinx+1/cosx-cos^2x/cosx+cosx+1/sinx-sin^2x/sinx# #=cancelsinx+secx-cancelcosx+cancelcosx+cscx-cancelsinx# #secx+cscx=RHS# Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 1149 views around the world You can reuse this answer Creative Commons License