cosx(2sinx + sqrt3)(-sqrt2 cosx + 1) = 0??
1 Answer
Maybe you meant "how do I solve this equation". By the zero-product property, one or all of these factors can be equal to
cosx(2sinx+sqrt3)( -sqrt2cosx+1) = 0
- When
cosx = 0 ,x = pi/2, (3pi)/2, . . . , or:
color(blue)(x = pi/2 pm npi)
- When
2sinx + sqrt3 = 0 ,sinx = -sqrt3/2 . That can occur for240^@ ,600^@ ,960^@ , etc., and300^@ ,660^@ ,1020^@ , etc. Or:
color(blue)(x = (4pi)/3 pm 2npi) , wheren is an integer.
color(blue)(x = (5pi)/3 pm 2npi) , wheren is an integer.
- When
1 - sqrt2cosx = 0 ,cosx = 1/sqrt2*(sqrt2/sqrt2) = sqrt2/2 . This occurs whenx = 45^@, 315^@, 405^@, 675^@, . . . . Sox = pi/4, (7pi)/4, (9pi)/4, (15pi)/4, . . . , or:
color(blue)(x = 2npi pm pi/4) , wheren is an integer.Note that written this way, this already includes both
pi/4 and(7pi)/4 for0 < x < 2pi and other corresponding angles in subsequent cycles. For example:
n = -1 -> x = -(9pi)/4, -(7pi)/4
n = 0 -> x = -pi/4, pi/4
n = 1 -> x = (7pi)/4, (9pi)/4
n = 2 -> x = (15pi)/4, (17pi)/4
If I took this at face value, I honestly don't think this is equal to
http://www.wolframalpha.com/input/?i=Is+cosx%282sinx%2Bsqrt3%29%28+-sqrt2cosx%2B1%29+%3D+0
If we tried, we would get:
cosx(2sinx+sqrt3)( -sqrt2cosx+1) stackrel(?)(=) 0
(2sinxcosx+sqrt3cosx)( -sqrt2cosx+1) stackrel(?)(=) 0
-2sqrt2sinxcos^2x + 2sinxcosx - sqrt6cos^2x + sqrt3cosx stackrel(?)(=) 0
2sinxcosx + sqrt3cosx stackrel(?)(=) 2sqrt2sinxcos^2x + sqrt6cos^2x
(2sinx + sqrt3)cosx stackrel(?)(=) (2sqrt2sinx + sqrt6)cos^2x
cancel((2sinx + sqrt3))cosx stackrel(?)(=) sqrt2cancel((2sinx + sqrt3))cos^2x
cosx stackrel(?)(=) sqrt2cos^2x
1 stackrel(?)(=) sqrt2cosx
1/sqrt2 = sqrt2/2 ne cosx necessarily. Functions are not always the same as constants.