cosx(2sinx + sqrt3)(-sqrt2 cosx + 1) = 0??

1 Answer
Jul 25, 2016

Maybe you meant "how do I solve this equation". By the zero-product property, one or all of these factors can be equal to 0.

cosx(2sinx+sqrt3)( -sqrt2cosx+1) = 0

  • When cosx = 0, x = pi/2, (3pi)/2, . . . , or:

color(blue)(x = pi/2 pm npi)

  • When 2sinx + sqrt3 = 0, sinx = -sqrt3/2. That can occur for 240^@, 600^@, 960^@, etc., and 300^@, 660^@, 1020^@, etc. Or:

color(blue)(x = (4pi)/3 pm 2npi), where n is an integer.
color(blue)(x = (5pi)/3 pm 2npi), where n is an integer.

  • When 1 - sqrt2cosx = 0, cosx = 1/sqrt2*(sqrt2/sqrt2) = sqrt2/2. This occurs when x = 45^@, 315^@, 405^@, 675^@, . . . . So x = pi/4, (7pi)/4, (9pi)/4, (15pi)/4, . . . , or:

color(blue)(x = 2npi pm pi/4), where n is an integer.

Note that written this way, this already includes both pi/4 and (7pi)/4 for 0 < x < 2pi and other corresponding angles in subsequent cycles. For example:

n = -1 -> x = -(9pi)/4, -(7pi)/4
n = 0 -> x = -pi/4, pi/4
n = 1 -> x = (7pi)/4, (9pi)/4
n = 2 -> x = (15pi)/4, (17pi)/4


If I took this at face value, I honestly don't think this is equal to 0.

http://www.wolframalpha.com/input/?i=Is+cosx%282sinx%2Bsqrt3%29%28+-sqrt2cosx%2B1%29+%3D+0

If we tried, we would get:

cosx(2sinx+sqrt3)( -sqrt2cosx+1) stackrel(?)(=) 0

(2sinxcosx+sqrt3cosx)( -sqrt2cosx+1) stackrel(?)(=) 0

-2sqrt2sinxcos^2x + 2sinxcosx - sqrt6cos^2x + sqrt3cosx stackrel(?)(=) 0

2sinxcosx + sqrt3cosx stackrel(?)(=) 2sqrt2sinxcos^2x + sqrt6cos^2x

(2sinx + sqrt3)cosx stackrel(?)(=) (2sqrt2sinx + sqrt6)cos^2x

cancel((2sinx + sqrt3))cosx stackrel(?)(=) sqrt2cancel((2sinx + sqrt3))cos^2x

cosx stackrel(?)(=) sqrt2cos^2x

1 stackrel(?)(=) sqrt2cosx

1/sqrt2 = sqrt2/2 ne cosx necessarily. Functions are not always the same as constants.

:. with no value for x, this is an impossible proof.