Question #e8ab5

3 Answers
Aug 21, 2016

cos(x+y)=(a^2+b^2)/2-1

Explanation:

First, recall what cos(x+y) is:
cos(x+y)=cosxcosy+sinxsiny

Note that:
(sinx+siny)^2=a^2
->sin^2x+2sinxsiny+sin^2y=a^2

And:
(cosx+cosy)^2=b^2
->cos^2x+2cosxcosy+cos^2y=b^2

Now we have these two equations:
sin^2x+2sinxsiny+sin^2y=a^2
cos^2x+2cosxcosy+cos^2y=b^2

If we add them together, we have:
sin^2x+2sinxsiny+sin^2y+cos^2x+2cosxcosy+cos^2y=a^2+b^2

Don't let the size of this equation throw you off. Look for identities and simplifications:
(sin^2x+cos^2x)+(2sinxsiny+2cosxcosy)+(cos^2y+sin^2y)=a^2+b^2

Since sin^2x+cos^2x=1 (Pythagorean Identity) and cos^2y+sin^2y=1 (Pythagorean Identity), we can simplify the equation to:
1+(2sinxsiny+2cosxcosy)+1=a^2+b^2
->(2sinxsiny+2cosxcosy)+2=a^2+b^2

We can factor out a 2 twice:
2(sinxsiny+cosxcosy)+2=a^2+b^2
->2((sinxsiny+cosxcosy)+1)=a^2+b^2

And divide:
(sinxsiny+cosxcosy)+1=(a^2+b^2)/2

And subtract:
sinxsiny+cosxcosy=(a^2+b^2)/2-1

Finally, since cos(x+y)=cosxcosy+sinxsiny, we have:
cos(x+y)=(a^2+b^2)/2-1

Aug 21, 2016

Given

sinx+siny=a.......(1)

cosx+cosy=b.......(2)

Squaring and adding (1) & (2)

(cosx+cosy)^2+(sinx+siny)^2= a^2+b^2

=>2(cosxcosy+sinxsiny)+2=a^2+b^2

=>2cos(x-y)=a^2+b^2-2....(3)

Squaring and Subtracting (1) from(2)

(cosx+cosy)^2-(sinx+siny)^2= b^2-a^2

=>2cos(x+y)+cos^2x-sin^2x+cos^2y-sin^2y=b^2-a^2

=>2cos(x+y)+cos2x+cos2y=b^2-a^2

=>2cos(x+y)+2cos(x+y)cos(x-y)=b^2-a^2

=>cos(x+y)(2+2cos(x-y))=b^2-a^2

("From (3) "2cos(x-y)=a^2+b^2-2)

=>cos(x+y)(2+b^2+a^2-2)=b^2-a^2

=>cos(x+y)(b^2+a^2)=b^2-a^2

=>cos(x+y)=(b^2-a^2)/(b^2+a^2)

Aug 21, 2016

cos(x+y)=(b^2-a^2)/(b^2+a^2).

Explanation:

sinx+siny=a rArr 2sin((x+y)/2)cos((x-y)/2)=a.........(1).

cosx+cosy=b rArr 2cos((x+y)/2)cos((x-y)/2)=b..........(2).

Dividing (1) by (2), we have, tan((x+y)/2)=a/b.

Now, cos(x+y)={1-tan^2((x+y)/2)}/{1+tan^2((x+y)/2)}

=(1-a^2/b^2)/(1+a^2/b^2)=(b^2-a^2)/(b^2+a^2).

Enjoy Maths.!