First, recall what cos(x+y) is:
cos(x+y)=cosxcosy+sinxsiny
Note that:
(sinx+siny)^2=a^2
->sin^2x+2sinxsiny+sin^2y=a^2
And:
(cosx+cosy)^2=b^2
->cos^2x+2cosxcosy+cos^2y=b^2
Now we have these two equations:
sin^2x+2sinxsiny+sin^2y=a^2
cos^2x+2cosxcosy+cos^2y=b^2
If we add them together, we have:
sin^2x+2sinxsiny+sin^2y+cos^2x+2cosxcosy+cos^2y=a^2+b^2
Don't let the size of this equation throw you off. Look for identities and simplifications:
(sin^2x+cos^2x)+(2sinxsiny+2cosxcosy)+(cos^2y+sin^2y)=a^2+b^2
Since sin^2x+cos^2x=1 (Pythagorean Identity) and cos^2y+sin^2y=1 (Pythagorean Identity), we can simplify the equation to:
1+(2sinxsiny+2cosxcosy)+1=a^2+b^2
->(2sinxsiny+2cosxcosy)+2=a^2+b^2
We can factor out a 2 twice:
2(sinxsiny+cosxcosy)+2=a^2+b^2
->2((sinxsiny+cosxcosy)+1)=a^2+b^2
And divide:
(sinxsiny+cosxcosy)+1=(a^2+b^2)/2
And subtract:
sinxsiny+cosxcosy=(a^2+b^2)/2-1
Finally, since cos(x+y)=cosxcosy+sinxsiny, we have:
cos(x+y)=(a^2+b^2)/2-1