Question #02a6f

1 Answer
Feb 6, 2017

To be contd.............

Explanation:

We use, a^3+b^3=(a+b)(a^2-ab+b^2)a3+b3=(a+b)(a2ab+b2) to get,

(costheta)^6+(sintheta)^6=cos^6theta+sin^6theta(cosθ)6+(sinθ)6=cos6θ+sin6θ

=(cos^2theta+sin^2theta)(cos^4theta-cos^2thetasin^2theta+sin^4theta)=(cos2θ+sin2θ)(cos4θcos2θsin2θ+sin4θ)

=(1){(cos^2theta+sin^2theta)^2-2sin^2thetacos^2theta-cos^2thetasin^2theta}=(1){(cos2θ+sin2θ)22sin2θcos2θcos2θsin2θ}

=1-3cos^2thetasin^2theta=13cos2θsin2θ

=1-3/4(2sinthetacostheta)^2=134(2sinθcosθ)2

=1-3/4(sin2theta)^2=134(sin2θ)2

=1-3/4(sin^2(2theta))=134(sin2(2θ))

Recall that, 1-cos2A=2sin^2A1cos2A=2sin2A.

Hence, the Exp.=1-3/8{2sin^2(2theta)}=138{2sin2(2θ)}

=1-3/8(1-cos4theta)=138(1cos4θ)

=1-3/8+3/8cos4theta=138+38cos4θ

=5/8+3/8cos4theta=58+38cos4θ