We will use the Identity : sec^2A-tan^2A=1.
Let us divide the Nr. and Dr. of L.H.S by cosA to get,
The L.H.S. ={(sinA+1-cosA)/cosA}/{(sinA-1+cosA)/cosA
={sinA/cosA+1/cosA-cosA/cosA}/{sinA/cosA-1/cosA+cosA/cosA}
=(tanA+secA-1)/(tanA-secA+1}
={tanA+secA-(sec^2A-tan^2A)}/(tanA-secA+1)
={(tanA+secA)-(secA+tanA)(secA-tanA)}/(tanA-secA+1)
={(secA+tanA)cancel((1-secA+tanA))}/cancel((tanA-secA+1)
=secA+tanA
= The R.H.S.
Hence, the Proof. Enjoy Maths.!
II^(nd) Method :-
We have, 1-sin^2A=cos^2A
rArr (1+sinA)(1-sinA)=cos^2A
rArr (1+sinA)/cosA=cosA/(1-sinA)
:. Each Rratio ={(1+sinA)-(cosA)}/{(cosA)-(1-sinA)}, i.e.,
Each Ratio=(1+sinA-cosA)/(cosA-1+sinA).
In particular, (1+sinA)/cosA=(1+sinA-cosA)/(cosA-1+sinA), or,
1/cosA+sinA/cosA=(1+sinA-cosA)/(cosA-1+sinA).
rArr secA+tanA=(1+sinA-cosA)/(cosA-1+sinA).