Observe that there are nn terms of coscos, and, in 2^n2n, the no. of 22 is
also nn. So, we utilise each 22 with every term of coscos.
We will also use the identity : sin2theta=2sinthetacostheta:sin2θ=2sinθcosθ. Thus,
TheL.H.S.=(2cosx)(2cos2x)(2cos4x)(2cos8x)...(2cos2^(n-1)x)
={(2sinxcosx)(2cos2x)(2cos4x)...........(2cos2^(n-1)x)}/sinx
={(sin2x)(2cos2x)(2cos4x).........(2cos2^(n-1)x)}/sinx
={(2sin2xcos2x)(2cos4x).......(2cos2^(n-1)x)}/sinx
={(sin4x)(2cos4x)..........(2cos2^(n-1)x)}/sinx
={(2sin4xcos4x)..........(2cos2^(n-1)x)}/sinx
vdots
vdots
vdots
=sin(2*2^(n-1)x)/sinx
=sin(2^nx)/sinx
But, x=pi/(2^n+1) rArr 2^nx+x=pi, or, 2^nx=pi-x, so that,
sin(2^nx)=sin(pi-x)=sinx. Therefore,
The L.H.S.=sinx/sinx=1=The R.H.S
Hence, the Proof. Enjoy Maths.!