csctheta^2cscθ2 and csc^2thetacsc2θ are different.
Let us see the figure below.
From the definition of trigonometric ratios, csctheta=("hypotenuse")/("opposite side")cscθ=hypotenuseopposite side
and csc^2theta=(csctheta)^2=cscthetaxxcscthetacsc2θ=(cscθ)2=cscθ×cscθ
= ("hypotenuse")^2/("opposite side")^2(hypotenuse)2(opposite side)2
However, csctheta^2cscθ2 is the cosecant ratio of theta^2θ2.
Now if thetaθ is in degrees, theta^2θ2 does not work out.
Hence while considering theta^2θ2, we consider it only in radians.
Now for example , if theta=pi/3θ=π3
csc^2theta=csc^2(pi/3)=(2/sqrt3)^2=4/9=0.4444csc2θ=csc2(π3)=(2√3)2=49=0.4444
For working out csctheta^2cscθ2, we have
theta=pi^2/9=9.8696/9=1.0966θ=π29=9.86969=1.0966
and using scientific calculator, with theta=1.0966θ=1.0966 in radians
csctheta^2=csc1.0966=1.124cscθ2=csc1.0966=1.124